The number of maximal sum-free subsets of integers

نویسندگان

  • József Balogh
  • Hong Liu
  • Maryam Sharifzadeh
  • Andrew Treglown
چکیده

Cameron and Erdős [6] raised the question of how many maximal sum-free sets there are in {1, . . . , n}, giving a lower bound of 2bn/4c. In this paper we prove that there are in fact at most 2(1/4+o(1))n maximal sum-free sets in {1, . . . , n}. Our proof makes use of container and removal lemmas of Green [8, 9] as well as a result of Deshouillers, Freiman, Sós and Temkin [7] on the structure of sum-free sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp bound on the number of maximal sum-free subsets of integers

Cameron and Erdős [6] asked whether the number of maximal sum-free sets in {1, . . . , n} is much smaller than the number of sum-free sets. In the same paper they gave a lower bound of 2bn/4c for the number of maximal sum-free sets. Here, we prove the following: For each 1 ≤ i ≤ 4, there is a constant Ci such that, given any n ≡ i mod 4, {1, . . . , n} contains (Ci + o(1))2 n/4 maximal sum-free...

متن کامل

Notes on sum-free and related sets

Our main topic is the number of subsets of 1; n] which are maximal with respect to some condition such as being sum-free, having no number dividing another, etc. We also investigate some related questions. In our earlier paper 8], we considered conditions on sets of positive integers (sum-freeness, Sidon sequences, etc.), and attempted to estimate the number of subsets of 1; n] satisfying each ...

متن کامل

A sharp bound on the number of maximal sum-free sets

Cameron and Erdős [7] asked whether the number of maximal sum-free sets in {1, . . . , n} is much smaller than the number of sum-free sets. In the same paper they gave a lower bound of 2bn/4c for the number of maximal sum-free sets. We prove the following: For each 1 ≤ i ≤ 4, there is a constant Ci such that, given any n ≡ i mod 4, {1, . . . , n} contains (Ci + o(1))2n/4 maximal sum-free sets. ...

متن کامل

Bounds on the Number of Maximal Sum-Free Sets

We show that the number of maximal sum-free subsets of {1, 2, . . . , n} is at most 2. We also show that 2 is an upper bound on the number of maximal product-free subsets of any group of order n.

متن کامل

A Note on the Number of (k, l)-Sum-Free Sets

A set A ⊆ N is (k, `)-sum-free, for k, ` ∈ N, k > `, if it contains no solutions to the equation x1 + · · ·+xk = y1 + · · ·+y`. Let ρ = ρ(k− `) be the smallest natural number not dividing k − `, and let r = rn, 0 ≤ r < ρ, be such that r ≡ n (mod ρ). The main result of this note says that if (k − `)/` is small in terms of ρ, then the number of (k, `)-sum-free subsets of [1, n] is equal to (φ(ρ) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014